Documentation

Mathlib.Topology.Instances.ENat

Topology on extended natural numbers #

Topology on ℕ∞.

Note: this is different from the EMetricSpace topology. The EMetricSpace topology has IsOpen {∞}, but all neighborhoods of in ℕ∞ contain infinite intervals.

Equations
@[simp]
theorem ENat.nhds_natCast (n : ) :
nhds n = pure n
@[simp]
theorem ENat.nhds_eq_pure {n : ℕ∞} (h : n ) :
nhds n = pure n
theorem ENat.isOpen_singleton {x : ℕ∞} (hx : x ) :
IsOpen {x}
theorem ENat.mem_nhds_iff {x : ℕ∞} {s : Set ℕ∞} (hx : x ) :
s nhds x x s
theorem ENat.mem_nhds_natCast_iff (n : ) {s : Set ℕ∞} :
s nhds n n s